
1

1
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Introduction to Grammar Writing

11-721
Grammars and Lexicons

Teruko Mitamura

teruko@cs.cmu.edu
www.cs.cmu.edu/~teruko

2
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Outline

Part 5: Grammar Writing
• Goals of Grammar Writing Course
• Grammar Writing Project
• Schedule
• Introduction to Grammar Writing

– Principle for Grammar Writing
– Process of Grammar Writing
– Design Issues
– How to Write a Grammar Using Generalized LR Parser

3
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Goals of Grammar Writing

• Understand principles of grammar writing
• Learn basic techniques for grammar writing
• Obtain awareness of real-world

development issues through laboratory
exercises (Learning by doing)
– in class exercises
– the grammar writing project

4
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Requirements
• Part 5: Grammar Writing course counts as 35% of

the course grade (attendance, in class exercises
and the grammar writing project).

• Attendance and class participation is very
important. If you miss class, you need to contact
us before the class.

• It is your responsibility to obtain handouts and
assignments if you miss the class.

• There will be Q/A sessions with TAs when
necessary.

5
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Schedule of Grammar Writing
Nov 5 Mon
• Schedule
• Introduction
• How to write a grammar
Before Nov 7, make sure that you can login to both Andrew

and CS machines.
Nov 7 Wed: Class will meet in the Cluster: Hunt Near/Far

Room
• Grammar writing project
• How to run the parser
• How to debug a grammar
• Q/A for the 1st assignment: step 1-2 and test suite for one type
• Grammar exercise (1)

6
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Schedule of Grammar Writing (2)
Nov 12 Mon
• Finish grammar exercise (1) and hand it in at the

end of class.
• Start grammar exercise (2)
Nov 14 Wed
• Finish grammar exercise (2) and hand it in at the

end of class.
• Grammar Writing Project -- The 1st assignment Due
Nov 19 Mon
• Grammar exercise (3)
Nov 21 Wed No Class (Thanksgiving Break)

2

7
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Schedule of Grammar Writing (3)
Nov 26 Mon
• Submit Grammar exercise (3)
• Start Grammar exercise (4)
• Feedback on the 1st assignment
Nov 28 Wed
• Submit Grammar exercise (4)
• Grammar exercise (5)
Dec 3 Mon
• Submit Grammar exercise (5)
• Q/A session

8
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Schedule of Grammar Writing (4)

Dec 5 Wed
• Q/A session
Dec 7 Fri
• Grammar Writing Project due at

3:00pm.

9
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Introduction to Grammar Writing

10
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Principles for Grammar Writing

• Generality
• Extensibility
• Selectivity
• Simplicity

11
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

1. Generality
Capture linguistic generalization

Test for constituency
– Conjunction test

“I ate a hot dog and a sandwich.”
*“I ate a hot dog and on the stove.”

– Particles and Prepositions
“I looked up John’s phone number.”
“I looked up Mary’s chimney.”
*”I looked up John’s phone number and Mary’s chimney.”
“I looked up Mary’s chimney and in her cupboards.”

12
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

2. Extensibility
Able to extend grammar without having to rewrite

a large portion of the grammar
– Additional structures

e.g. subordinate clauses, relative clauses

– Additional lexicons
– Free word order language (e.g. Japanese)

3

13
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Japanese Examples
Nichiyoubi ni Ichiro ga hoomuran wo utta.
Sunday on Ichiro NOM home run ACC hit-PAST
“Ichiro hit a home run on Sunday.”

Nichiyoubi ni hoomuran wo Ichiro ga utta.
Ichiro ga nichiyoubi ni hoomuran wo utta.
Ichiro ga homuran wo nichiyoubi ni utta.
Hoomuran wo Ichiro ga nichiyoubi ni utta.
Hoomuran wo nichiyoubi ni Ichiro ga utta.

It’s not general or extensible to write phrase structure rules for
each sentence.

14
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

3. Selectivity

• Not to over-generalize the grammar
• Ungrammatical sentences should fail

Birds fly.
*Birds flies.
*Bird fly.
A bird is flying.
*A bird are flying.

15
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

4. Simplicity

• Write clear, simple rules
– Organization of rules: from top level categories

to lower level rules
– Use of general constraints rather than specific

ones
– Well-documented rules
– Disjunctive equations within a rule VS.

separate phrase structure rules

16
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Example
(<s> <== (<np> <vp>)

((*EOR*
(((x1 root) = "I")
((x2 form) = (*OR* rootform past am was)))
(((x1 root) = (*OR* "he" "she" "it" "this" "that"))
((x2 form) = (*OR* present3sg past is was)))
(((x1 root) = (*OR* "you" "we" "they" "those" "these" "there"))
((x2 form) = (*OR* rootform past are were)))
(((x1 count) = +)
((x1 number) =c pl)
((x2 form) = (*OR* rootform past are were)))
(((x1 count) = +)
((x1 number) = sg)
((x2 form) = (*OR* present3sg past is was)))

....
(*OR* (((x2 form) = (*or* past was were))

((x2 tense) = past))
(((x2 form) = (*or* rootform is are am present3sg))))

(x0 = x2)
((x0 subj) = x1)))

17
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Grammar Writing Project
• Develop a grammar for 9 types of English

sentences
• Follow the process of Grammar Writing
• 1st assignment due on Nov 14 Wed in class
• The project is due on Dec 7 Friday at 3:00pm
• Late submission will be down-graded
• Work alone
• There will be no Final Exam
• More detail information in the next class

18
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Process of Grammar Writing

7 Steps to follow:
1.Planning
2.Design
3.Create test suite
4.Implement
5.Document
6.Test & Debug
7.Describe remaining issues

4

19
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

1. Planning the Task
• Set a goal

– Purpose of developing a grammar
• MT system, QA system, CALL system, etc.

– Determine type of sentence structures
– Determine sets of rules (e.g. S rules, NP rules)

• Make a schedule for tasks (when to do
what)

• Estimate the time required for each step.

20
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

2. Grammar Design
• Decide set of structures to be covered.

e.g. through corpus analysis
• For each type of structure:

– Decide what the c-structure would look like.

S

NP VP

S NP VP

21
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

2. Grammar Design (2)
• For each type of structure:

– Decide on the set of grammatical features.
(e.g., person/number/gender agreement, verb class

features, etc.)
– Decide on the grammatical functions to be used
(e.g., SUBJ, OBJ, PP, etc.)
– Decide what the feature structure would look like.

(cat n)
(number sg)
(form pastpart)

22
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

3. Create Test Suite

• Write the purpose of each test.
(e.g. test for subj-verb agreement, etc.)

• Write each sentence type that should parse.
• Write sentences that shouldn't parse.
• Write why these sentences should fail.

23
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

4. Implement Grammar

• Organize the types of rules
(e.g. start rules, NP rules, VP rules, PP
rules, etc.)

• Write a phrase structure rule.
• Add equations to the phrase structure rule.
• Write morphology rules if necessary.
• Write lexical entries.

24
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Grammar Rule Example

x0 x1 x2

(<S> <==> (<NP> <VP>)
(((x1 case) = nominative)
((x1 agr) = (x2 agr))
((x0 subj) = x1)
(x0 = x2)))

TEST

ACTION

5

25
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

5. Documentation in the Grammar

• Cover page should include:
– parser used
– implementer's name(s) and dates
– grammatical functions, features and

values used
– grammar change notes when changes

occur

26
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

5. Documentation in the Grammar (2)

• Explain each type of rule
– Sentence rules
– NP rules
– VP rules, etc.

• Write comments when necessary
– e.g. ``This is to rule out wrong subj/verb

agreement.''
• Write short examples when necessary

27
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

6. Testing and Debugging
1. Create a test file from the test suite.
2. Run a test using the test file.
3. Check the result to see if you get the expected

output.
4. If not, trace the grammar.
5. Debug the grammar.
6. Test the grammar again until you get it right.
7. Write the results into a file.
8. Comment on the results.

(e.g. ambiguity, reason for failure, etc.)
9. Comment the fix in the grammar change note.

28
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

7. Describe remaining issues
• Compare: Time estimate vs. Actual time spent
• Any unresolved problems
• Reasons for the problems

– Ambiguity: reasons for more than one parse
– Any limitations that you encountered

• Platform limitations
• Parser limitations
• Grammar rule limitations

– Other Reasons
• Other issues/Discussions
• Future Plan

29
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Grammar Design Issues

• Coverage of the grammar
– Objectives of the system

• Machine translation
• Language Tutoring
• Information Retrieval
• Question Answering

– Type of documentation
• e.g. general vs technical

– Controlled vs General Language

30
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Grammar Design Issues (2)
• Linguistic Issues: Ambiguity resolution

– Lexical ambiguity
e.g. POS ambiguity, semantic ambiguity

– Syntactic ambiguity
e.g. PP attachment ambiguity

N-N compound ambiguity
• Organization of the linguistic information

– lexicon
– morphology
– syntax
– domain semantics

6

31
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Real Example: KANT lexicon

((:ROOT "rip")
(:POS V)
(:CONCEPT *A-RIP)
(:SYL-DOUBLE +)
(:SYN-FEATURES

(VALENCY TRANS INTRANS))
(:CLASS AGENT/AGENT+THEME)
(:SENSE "Technical term:
to slash into with a ripper"))

32
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Real Example: Input Sentences
Pump <callout>7</callout> has compensator valve <callout>6</callout>,
which automatically keeps pump pressure and oil flow at<?CTE attach
head='keep' head-pos='14' modi='at' modi-pos='90 2' all-heads='57 5 85 4 10
3' sel='1'> a rate that is necessary in order to fulfill the system load and
needed flow. When none of the hydraulic circuits are being used<?CTE
means text='used' val='*A-USE' all-vals='*A-USE *P-USED' sel='1'>, the
pump is at low pressure standby, which is approximately
<unitsgrp><metric>1725 kPa</metric><english>250
psi</english></unitsgrp>. If one hydraulic circuit or more is being
used<?CTE means text='used' val='*A-USE' all-vals='*A-USE *P-USED'
sel='1'>, a resolver network compares the control valve work port pressures.
The single highest<?CTE means text='highest' val='*P-HIGH-2' all-
vals='*P-HIGH-1 *P-HIGH-2 *P-HIGH-3' sel='2'> pressure that is
felt<?CTE means text='felt' val='*A-FEEL-1' all-vals='*A-FEEL-1 *A-
FEEL-2 *A-FEEL-3 *P-FELT' sel='1'> goes through signal line
<callout>8</callout> to pump compensator valve <callout>6</callout>.

33
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

How to Write a Grammar
for Generalized LR Parser

(Tomita parser)

34
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

How to Write a Grammar
• General Format of Grammar Rules
• The Starting Symbol
• Equations

– General equations
– Disjunctive equations
– Constraint equations
– Negative equations

• *UNDEFINED* and *DEFINED*
• Assigning Multiple Values

35
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Generalized LR Parser/Compiler
• Based on Tomita’s Generalized LR parsing

Algorithm (Tomita, 1985)
• Written in LISP
• Pseudo Unification for practical use
• The grammar is a set of context-free phrase

structure rules with a list of equations.
• The rules are compiled into LR parsing

table and the equations are compiled into
LISP functions.

36
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

From LFG to Generalized LR Parser

LFG: Rule 1
S NP VP

(SUBJ)= =
(CASE) = nom (VFORM) =c fin

7

37
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

From LFG to Generalized LR Parser (2)

(context-free phrase structure rule
(list of equations))

x0 x1 x2
(<S> <==> (< NP > <VP >)

(
((x1 CASE) = nom) ((x0 VFORM) =c fin)
((x0 SUBJ) = x1) (x0 = x2)

))

38
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

From LFG to Generalized LR Parser (3)

LFG Rule 2:
VP --> V

=
GLR
(<VP> < == > (<V>)

(
(x0 = x1)

))

39
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

From LFG to Generalized LR Parser (4)

LFG Rule 3:

VP --> V NP
= (OBJ) =

(CASE) = acc

40
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

From LFG to Generalized LR Parser (5)

GLR
(<VP> < == > (<V> <NP>)

(
((x2 case) = acc)
((x0 obj) = x2)
(x0 = x1)

))

41
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

General Format of Grammar Rules

x0 x1 x2

(<S> <==> (<NP> <VP>)
(((x1 case) = nom)
((x1 agr) = (x2 agr))
((x0 subj) = x1)
(x0 = x2)))

TEST

ACTION

42
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

The Starting Symbol

(<start> <==> (<S>)
((x0 = x1)))

(<start> <==> (<NP>)
((x0 = x1)))

8

43
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Equations (1)
The left hand side of an equation is a path. A path is:
• A variable (e.g. x0, x1, etc.)
• A variable followed by any number of character

strings separated by spaces.
(x1 subj), (x2 xcomp subj)

The character strings may not include certain
special characters, such as the quotation mark.
The type of path must be enclosed in parentheses.

44
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Equations (2)

The right hand side of an equation is:
• A path
• A character string (e.g. foot, head, 12),

excluding some special characters, such as the
quotation mark.

• A list of consisting of the word (*OR* or
EOR), followed by any number of character
strings
e.g. (*OR* nominative accusative)

45
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Example Equations

Each equation is enclosed in parentheses:
(x0 = x1)
((x0 subj) = x1)
((x1 case) = (*OR* nom acc))
((x1 agreement) = (x2 agreement))
((x0 root) = bird)

46
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Disjunctive Equations

• There are two types of disjunctive equations:
OR and *EOR*.

• A disjunction consists of the word, *OR* or
EOR, followed by any number of lists of
equations.
(*OR*

(list-of-equations)
(list-of-equations)
(list-of-equations)
...)

47
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Example of Disjunctive Equations

Note that each disjunctive equation needs to
be enclosed in parentheses.
(*OR*

(((x2 tense) = present)
((x1 agr) = (x2 agr)))
(((x2 tense) = past))

)

48
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Constraint Equations
• Constraint equations use the symbol =c in

place of the plain equal sign.
• A regular equation causes unification or

assignment of a value to a function, while
constraint equation only checks to make
sure that the function has the intended
value.

• If the function does not already have the
intended value, the parse will fail.

9

49
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Examples of Constraint Equations

((x1 case) =c nom)

((x1 case) =c (*OR* nom acc))

This equation doesn’t work.
((x1 agr) =c (x2 agr))

50
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Negative Equations
• The word *NOT* can be used on the right

hand side of an equation to check to see if
the value specified in the equation does not
exist.
((x2 subcat) = (*NOT* intrans))

51
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

UNDEFINED and *DEFINED*

• The word *UNDEFINED* and
DEFINED can be used on the right hand
side of an equation.

• *UNDEFINED* makes sure that the left
hand side of the equation has no value.

• *DEFINED* makes sure that the left hand
side of the equation has a value.
((x1 negation) = *UNDEFINED*)

52
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Assigning Multiple Values

• Multiple values can be assigned to a feature.
• Use the grater-than sign (>) in place of the equal

sign.
• If the following rule applies recursively, the pp-

adjunct function will have several different values
at the same time:
(<S> <==> (<S> <PP>)

((x0 = x1)
((x0 pp-adjunct) > x2)))

53
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Commenting the Grammar

• Any line that begins with a semi-colon (;) is
treated as a comment.

; <This is a comment.>
; (<start> <==> (<NP>)
; ((x0 = x1)))

54
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Schedule
Nov 7 Wed:
Class will meet in the Hunt Near/Far Cluster room
Before Nov 7, make sure that you can login to both

Andrew and CS machines.
• Grammar writing project
• How to run the parser
• How to debug a grammar
• Q/A for the 1st assignment: step 1-2 and test suite for one

type
• Start Grammar exercise (1)

10

55
Carnegie Mellon
School of Computer Science LTI Grammars and Lexicons

Copyright © 2007, Carnegie Mellon. All Rights Reserved.

Questions?

